Agenda

- 1. Perspektiver på cyber-risici
- 2. Fokus på bestyrelsen
- 3. Cyber Risk Reporting

Felix Bozard Manager <u>felix.bozard@pwc.com</u> T: +45 2366 3649

Peter Brock Madsen Partner peter.brock.madsen@pwc.com T: +45 2056 8505

Perspektiver på cyber-risici

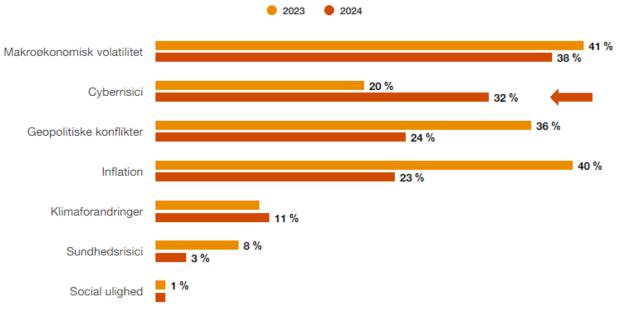
Perspektiver på cyber-risici

PwC's 27th Annual Global CEO Survey

Thriving in an age of continuous reinvention

As existential threats converge, many companies are taking steps to reinvent themselves. Is it enough? And what will it take to succeed?

www.ceosurvey.pwc



Flere danske CEO'er vurderer, at deres virksomhed er påvirket af cybertruslen

Danmark

Hvor påvirket er din virksomhed af følgende trusler i de kommende 12 måneder?

(Viser dem, der har svaret "ekstremt/meget påvirket")

Kilde: PwC's 27th Annual Global CEO Survey (danske svar)

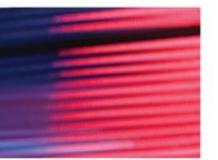
For 10. år i træk har PwC taget temperaturen på arbejdet med cybersikkerhed i Danmark. 463 topledere, sikkerhedschefer og fagspecialister fra den private og offentlige sektor har deltaget i undersøgelsen. Respondenterne har bidraget med deres indsigter i bl.a. investeringer, udfordringer og muligheder i arbejdet med cybersikkerhed. De har desuden vurderet det aktuelle trusselsbillede og rapporteret, hvordan og i hvilket omfang de arbejder med cyber- og informationssikkerhed.

61 %

anvender eller planlægger at anvende Al i arbejdet med cybersikkerhed

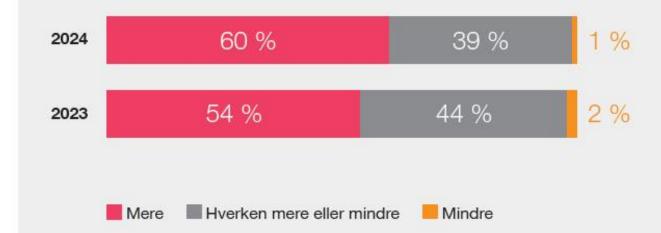
%

er mere bekymrede for cybertrusler i dag end for 12 måneder siden


Cybercrime Survey 2024

41 %

af virksomhederne har beredskab som højest prioriterede investering

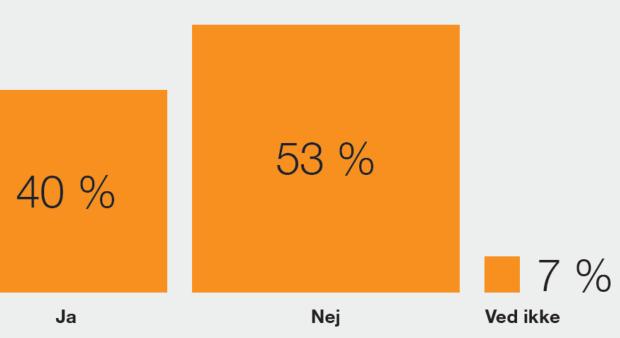


På tre år er der sket en femdobling i andelen af virksomheder, der har Al som højt prioriteret investering inden for cybersikkerhed.

Øget bekymring for cyberangreb i dansk erhvervsliv og den offentlige sektor

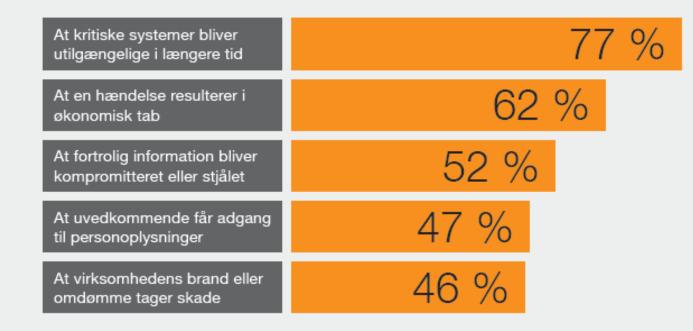
Bekymringen for cybertrusler fortsætter med at vokse i det danske erhvervsliv og den offentlige sektor. Hele 60 % af de adspurgte virksomheder angiver, at de er mere bekymrede for de cybertrusler, de står over for i dag, sammenlignet med for 12 måneder siden. 39 % vurderer, at deres bekymringsniveau er uændret, mens blot 1 % føler sig mindre bekymrede end for et år siden.

Spørgsmål: Bekymrer du dig i dag mere eller mindre om de cybertrusler, din virksomhed oplever, end du gjorde for 12 måneder siden?

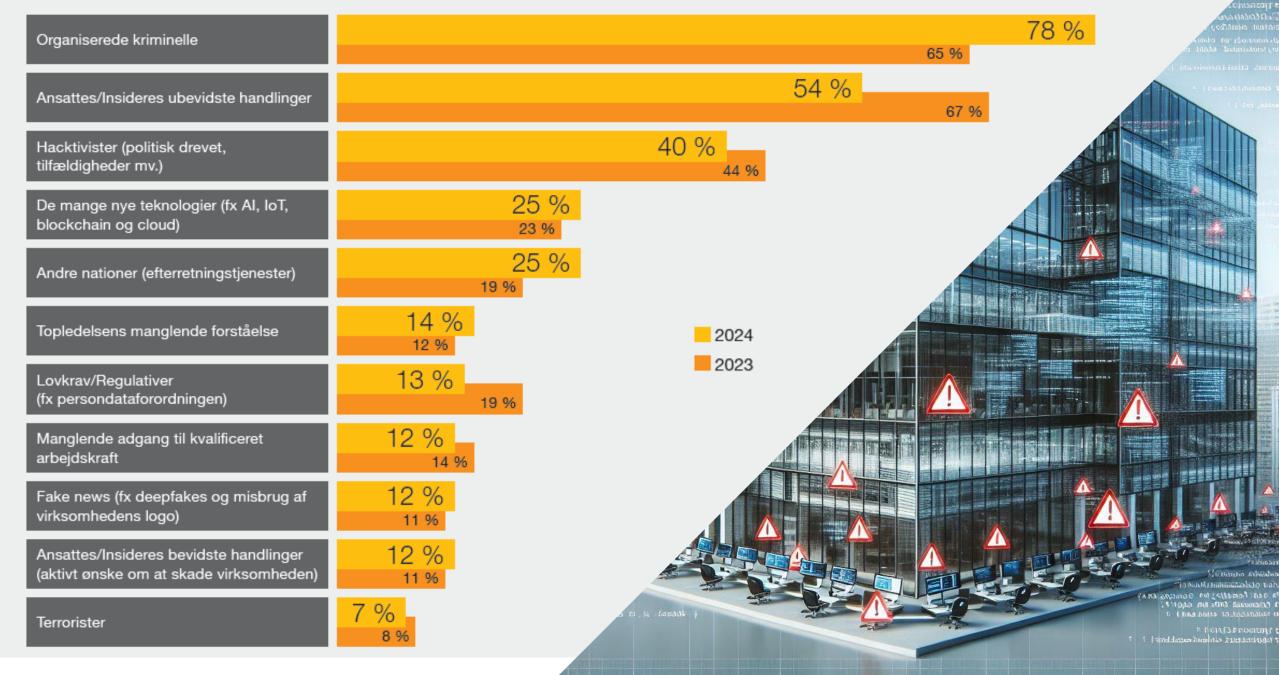


Spørgsmål: I hvilken grad er denne bekymring relateret til konflikten mellem Rusland og Vesten?

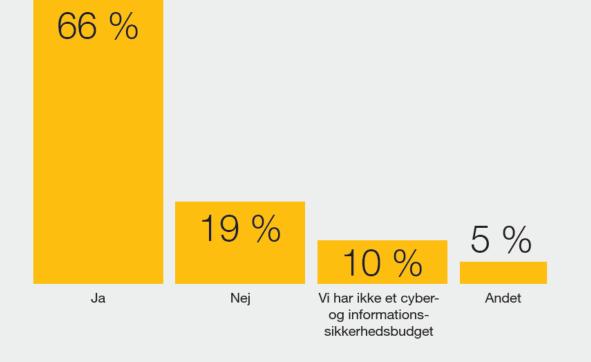
Spørgsmål: Har din virksomhed planlagt eller implementeret nye cybersikkerhedstiltag som følge af konflikten mellem Rusland og Vesten?


Som reaktion på den forøgede trussel har 40 % af virksomhederne implementeret nye cybersikkerhedstiltag. Disse omfatter både forebyggende foranstaltninger til at forhindre hændelser og beredskabsforanstaltninger, der styrker virksomhedernes evne til hurtigt og effektivt at reagere, hvis de bliver ramt af et cyberangreb.

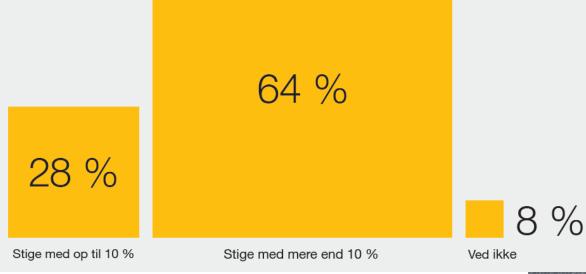
Spørgsmål: Hvilke tiltag drejer det sig om?


Tiltag, som kan bidrage til at forhindre, at virksomheden bliver ramt af en cybersikkerhedshændelse (fx investering i it-løsninger eller awareness-tiltag)	86 %
Tiltag, som kan bidrage til at styrke virksomhedens evne til at håndtere cybersikkerhedshændelser, såfremt virksomheden bliver ramt af en sådan (fx beredskabsplaner – herunder roller og ansvar – politik og proces for reetablering)	75 %
Andet	5 %

Spørgsmål: Hvad er din virksomheds største bekymring i relation til konsekvenserne af en cyberhændelse?



Spørgsmål: Hvad udgør de største trusler for din virksomhed i relation til cyber- og informationssikkerhed?


De danske virksomheder fortsætter med at øge budgetterne inden for cyber- og informationssikkerhed. Således forventer 66 % af virksomhederne at bruge endnu flere midler på bekæmpelse af cyberangreb.

Spørgsmål: Forventer/Tror du, at virksomhedens cyber- og informationssikkerhedsbudget vil vokse inden for de næste 12 måneder?

Awareness-træning topper virksomhedernes liste over prioriterede investeringer. I årets undersøgelse har man som noget nyt kunnet vælge beredskab, og denne kategori går direkte ind på en delt andenplads over de mest prioriterede investeringer. På en delt andenplads finder vi også metodeforankring, som går fra 23 % i 2023 til 41 % i 2024. Det skyldes bl.a., at flere virksomheder i stigende grad læner sig op ad diverse metoder til at strukturere deres sikkerhedsarbejde for at imødekomme kravene fra ny lovgivning, fx NIS 2 og DORA.

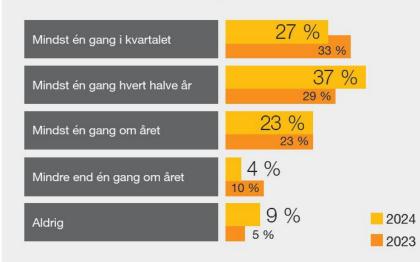
Spørgsmål: Hvor meget forventer du, at cyber- og informationssikkerhedsbudgettet vil stige inden for de næste 12 måneder?

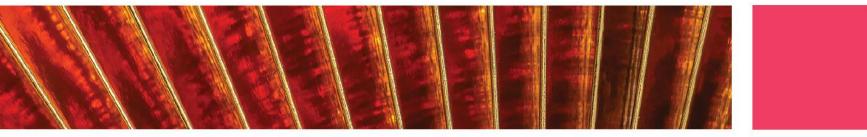
Spørgsmål: Hvad er din virksomheds højst prioriterede investeringer inden for it-sikkerhed de næste 12 måneder?

		ARDURINIE
Awareness-træning	49 %	
Metodeforankring, fx ISO 2700x, CIS 18 eller NIST	41 %	
Beredskab	41 % NY	
Identity & access management (IAM)	30 %	
Segmentering af netværk	27 %	
Kunstig intelligens (Al)	25 %	
Data loss prevention (DLP)	24 %	
Central og Intelligent logning (SIEM)	23 %	
Endpoint detection & response (EDR)	23 %	
Udskiftning af gammel teknologi	20 %	
Managed security services	20 %	
Priviligeret adgangsstyring (PAM)	17 % 🔎	
Intrusion detection systems (IDS)		
Identifikation af malware		
Kryptering	13 %	-
Operational technology (OT), fx sikkerhed inden for PLC, SCADA og IoT	10 %	
2024 Ændring fra 2023 i %		slide 12

47

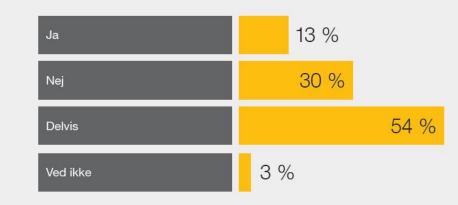
Fokus på bestyrelsen

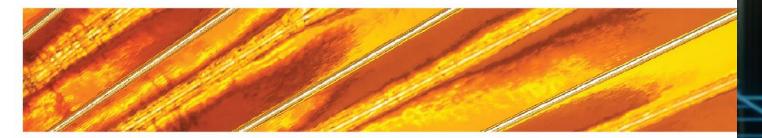

7 ud af 10

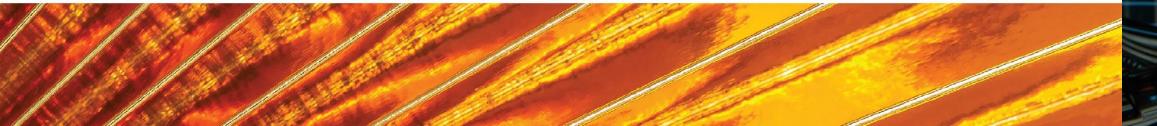

bestyrelsesmedlemmer har cybersikkerhed som en fast del af deres årshjul

Trods dette strategiske fokus viser undersøgelsen, at der er områder, hvor udviklingen stagnerer. Løbende opfølgning på cyberrisici og behandling af hændelser drøftes eksempelvis ikke oftere i bestyrelserne end tidligere. Derudover fortæller færre bestyrelsesmedlemmer, at de modtager træning i cyber- og informationssikkerhed sammenlignet med tidligere år, hvilket kan pege på en udfordring, i forhold til at sikre at bestyrelsen har de nødvendige kompetencer til at håndtere de stigende trusler. Flere medlemmer end tidligere fortæller også, at bestyrelsens samlede kompetencer på dette område ikke er tilstrækkeligt dybdegående.

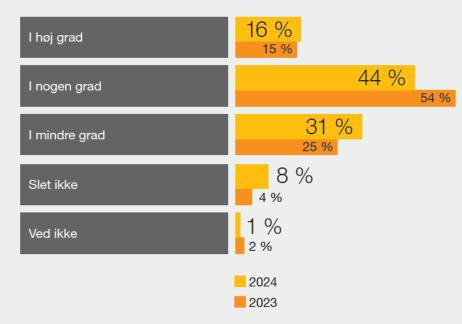
Spørgsmål: Hvor ofte modtager og behandler bestyrelsen information vedrørende cyberrisici?






Spørgsmål: Hvor ofte behandler bestyrelsen cyberhændelser?

Spørgsmål: Modtager bestyrelsen træning i cyber- og informationssikkerhed?



Spørgsmål: Fører bestyrelsen kontrol med, at virksomheden har testede beredskabs- og kommunikationsplaner for håndtering i tilfælde af hackerangreb, strømnedbrud mv.?

Spørgsmål: I hvilken grad vurderer du, at sammensætningen af bestyrelsens kompetencer giver dyb nok viden om cyber- og informationssikkerhed?

ANBEFALINGER OG TJEKLISTE

Til styrkelse af strategiske cyberkompetencer i danske bestyrelser

is atencer :NDUSTRIENS FOND

KROMANN REUMERT

Denne publikation udgør ikke og kan ikke erstatte professionel rådgivning. Bestyrelsesforeningen eller dens samarbejdspartnere påtager sig ikke ansvar for tab som følge af handlinger eller undladelser baseret på publikationens indhold. Alle rettigheder forbeholdes.

Dubex:

Udpluk fra Bestyrelsesforeningens checkliste

1. Risikovurdering – værdier og trusler

- Hvad er vores vigtige License to Operate (LtO) aktiver? (dvs. hvad vil vi gerne beskytte, hvad er vigtigt for vores forretning, hvad er kronjuvelerne?)
- Hvad truer vores vigtige LtO aktiver (trusselsvurdering)?
- Hvorfor skulle dette kunne ske (sårbarhedsvurdering)?
- Hvad er sandsynligheden for, at det sker?
- Hvad er konsekvensen af, at det sker (konsekvensanalyse)?
- Hvad har vi gjort for at reducere risikoen (i form af forebyggelse og beredskab)?

4. Rapportering - kontrol og tilsyn

- Har bestyrelsen implementeret cybersikkerhed som en fast del af sit årshjul?
- Er cybersikkerhed et fast punkt på dagsordenen på bestyrelsesmøderne?
- Modtager bestyrelsen relevant rapportering fra direktionen om virksomhedens cybersikkerhed forud for hvert møde (med bl.a. risici, status, testresultater, investeringer, anbefalinger mv.)?
 - Får virksomheden og/eller dens leverandører udarbejdet ekstern kontrol, f.eks. revisionserklæringer, på it-sikkerhed?

Cyber Risk Reporting

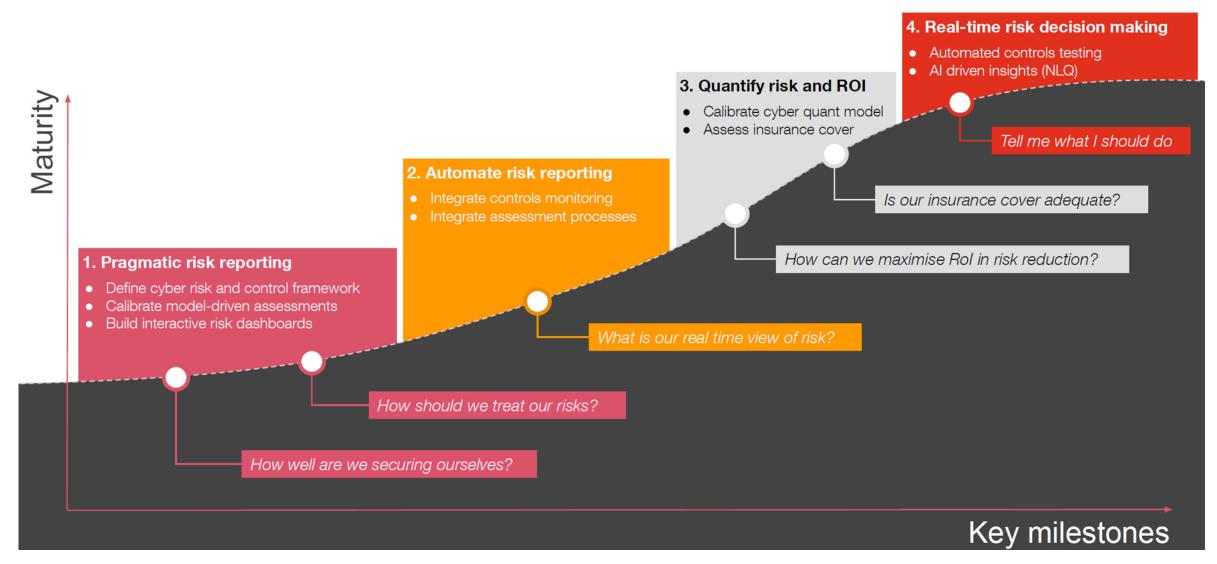
Cyber Risk Management – summed up

Welcome

The business

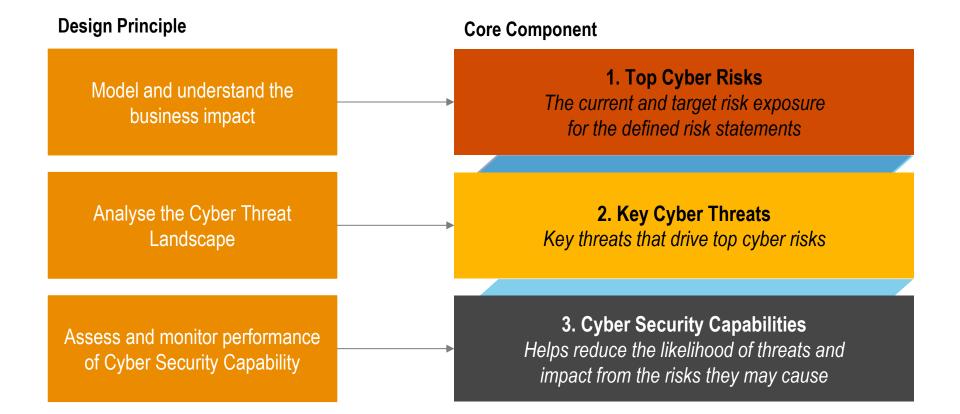

- What do we absolutely need to secure and protect from harm?
- What is the impact of a security incident if protection fails?

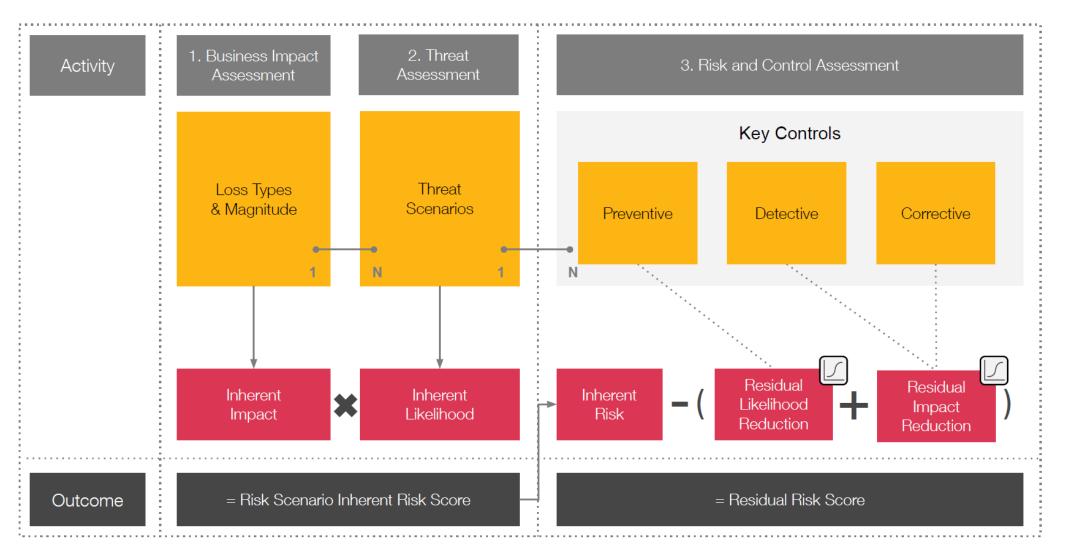
The threat landscape


- Who would potentially try to hurt our business?
- How real is the threat and scenarios we are facing?

The security capabilities

- How well are we securing ourselves today?
- Where do we need to improve and in what order/priority?


Proposed journey towards fact-based insights


Agreeing on taxonomy

Construction of the second second

A Cybersecurity Risk Management Framework requires a common taxonomy of cyber security risks, its relationship to threats and the mitigating capabilities that need to be in place to ensure cyber security risks are prudently and consistently managed.

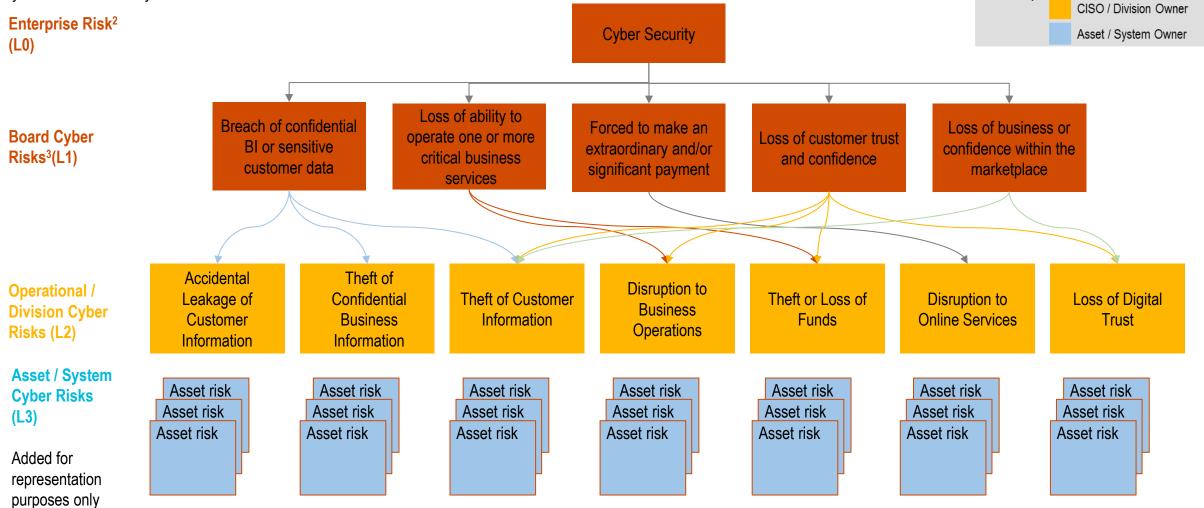
Using a 'basic' risk model

🧹 - The risk model is calibrated using a logistic s-curve to better reflect reality (e.g. CMMI level 5 controls does not mean zero residual risk)

Deterministic Risk Calculation Logic

	Impact assessment	Threat identification & assessment	Con assess			Ri asses	sk sment		Reporting
	1. Calculate inherent impact	2. Calculate inherent likelihood	3. Calculate controls derived scores	4. Aggregate and weight controls scores	5. Calculate likelihood reduction factor	6. Calculate residual likelihood	7. Calculate impact reduction factor	8. Calculate residual impact	9. Determine residual risk rating
Scope	per risk per OU	per threat scenario per OU	per control per OU	per control type per OU	per threat scenario per OU	per threat scenario per OU	per risk per OU	per risk per OU	per risk per OU
Input	BIA assessment, ERM impact framework	sophistication, proximity, frequency	control assessed score, metrics score, metrics RAG, control effectiveness factorisation	control derived score, control weighting	overall prevent derived score, impact reduction factor curve	inherent likelihood score, likelihood reduction factor	overall detect and correct derived score, impact reduction factor curve	inherent impact score, impact reduction factor	residual impact, residual likelihood, ERM heatmap
Output	inherent impact rating	inherent likelihood rating	control derived score	overall control type derived score (prevent, detect, correct)	likelihood reduction factor (%)	residual likelihood rating	impact reduction factor (%)	residual impact rating	residual risk rating

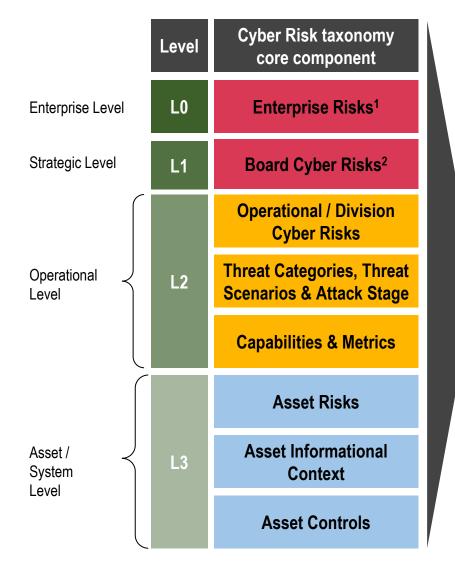
Cyber Risk Hierarchy

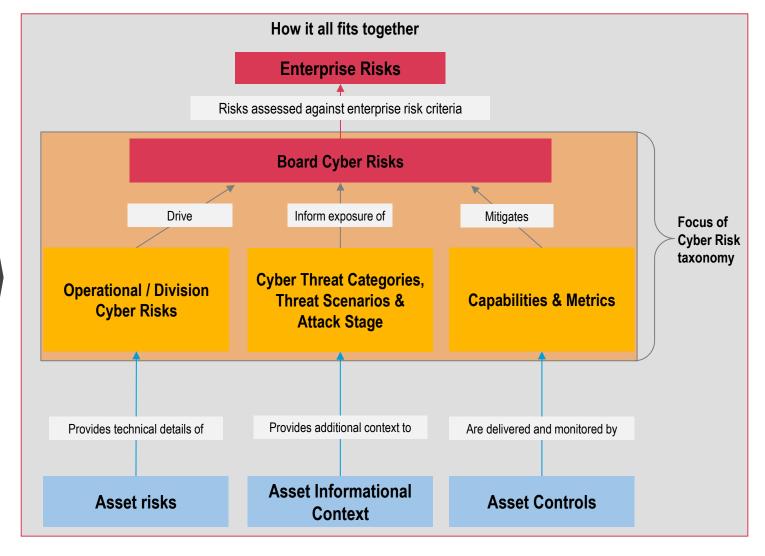

Board & Group Executive

team

Cyber Risk

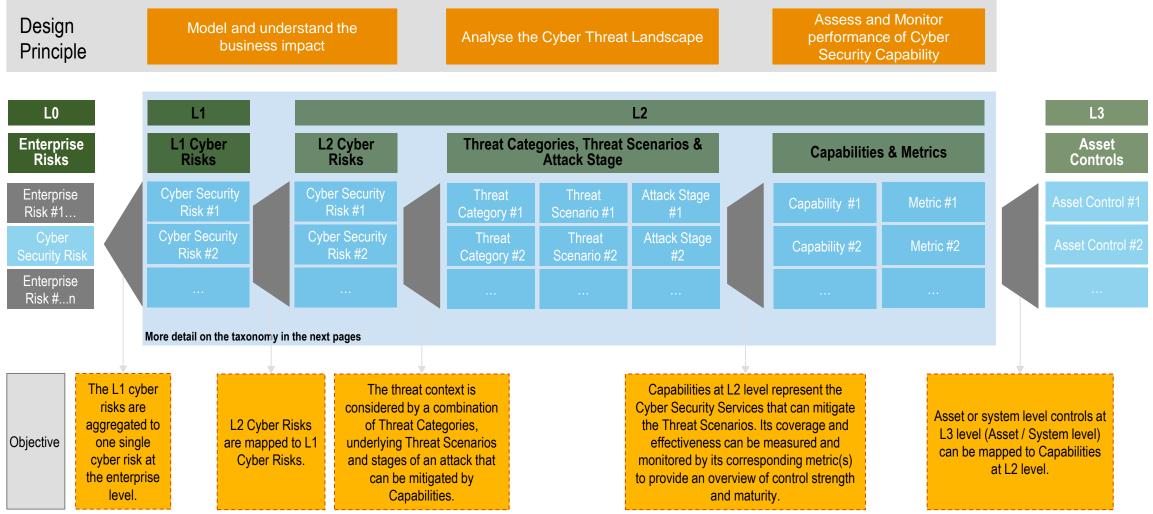
Ownership¹


A Cyber Risk hierarchy allows for risk aggregation and clear assignment of risk ownership. The hierarchy represented shows the relationship between L0, L1, L2 & L3 risks embedded into the Cyber Risk taxonomy.

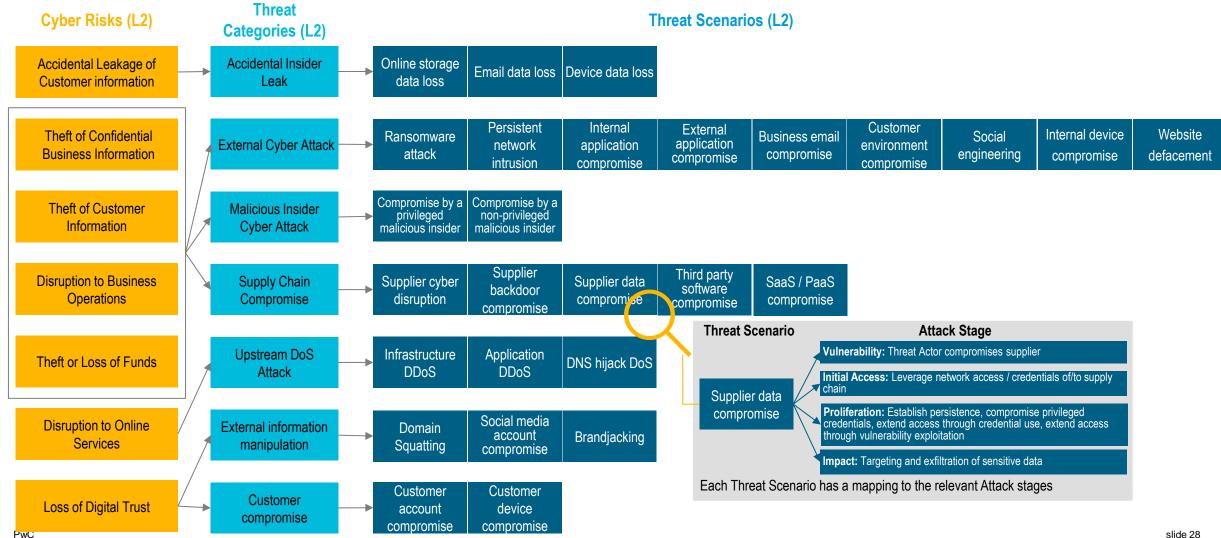


1: Cyber Risk Ownership is defined as part of the Cyber Security Risk Management Framework; 2: Corporate Risk Register (Cyber Security as risk #xx); 3: Cyber Risks reported by Group CISO to the Board

Cyber Risk & Control Levels



Mapping approach for Cyber risks and objectives


The Cyber Risk taxonomy and underlying reporting approach is based on the mapping between the L1 Cyber Risks to L2 Cyber Risks, to the threat context that contributes to them and the capabilities in place to mitigate those threats.

Threat Categories, Threat Scenarios & Attack Stages

A clear taxonomy and relationship between Operational / Divisional Cyber Risks (L2), the relevant Threat Categories and the underlying Threat Scenarios for each Threat Category is defined as follows.

Using pragmatic dashboards (BoD-level)

н

н

н

н

Inherent Baseline Current Planned Target

Μ

М

Μ

M

		Туре	of risk: All sele	cted	Organisa	ation unit: Enterp	orise 🕥 🎦	Ξ
F	leatmap)						
	5							
	4						A R04	
σ								
Likelihood	3							
						F∰1 €84 R04		
	2							
					R04			
	1				RU4			
	0		1	2 Im	3 pact	4	5	

Risk Heatmap Is our risk exposure within appetite?

Risk Exposure

ID

R01

R02

R03

R04

R05

R06

R07

Impact Type

Theft of Funds

Loss of Digital Trust

Accidental Leakage of Custom...

Theft of Confidential Business I...

Theft of Customer Information

Disruption to Business Operati...

Disruption to Online Services

Using pragmatic dashboards (Risk Owner-level)

Risk Posture How are we mitigating our risks?

Organisation unit: Enterprise

Risks		Threats			
Impact Type	Exposure	Name	Exposure	Prevent	Det/C
Accidental Leakage of	S►	 Accidental Insider Leak 	М	2.4	2.4
Customer information		 	М	2.4	2.5
Disruption to Business Operations	S►	 External Cyber Attack 	M	2.4	2.4
Disruption to Online Services	S►	 External information manipulation 	М	2.4	2.6
Loss of Digital Trust	S►	 Malicious Insider Cyber Attack 	М	2.4	2.4
Theft of Confidential	S►	 Physical security attack 	М	2.4	2.6
Business Information		 Supply Chain Compromise 	М	2.4	2.4
Theft of Customer Information	S►		М	2.4	2.5
Theft of Funds	5 ►				

Controls				
ID: Name (i)	Туре	Assessed	Derived	KCI
	0 Р	2.6	2.6	3
∃ CIS.02: Inventory and Control of Software Assets	0 Р	2.3	2.3	2
	🕢 Dir	2.6	2.4	28
$\oplus~$ CIS.04: Secure Configuration of Enterprise Assets and	🕗 Dir	2.4	2.3	13
CIS.05: Account Management	🖉 Р	3.0	2.8	9
∃ CIS.06: Access Control Management	🖉 Р	2.5	2.5	14
∃ CIS.07: Continuous Vulnerability Management	🕑 Dir	2.3	2.3	7
∃ CIS.08: Audit Log Management	🕗 Dir	2.3	2.3	15
∃ CIS.09: Email and Web Browser Protections	🖉 Р	2.8	2.6	3
	Ø Р	2.5	2.5	6
∃ CIS.11: Data Recovery	🕢 Dir	2.1	2.1	11
∃ CIS.12: Network Infrastructure Management	🖉 Р	2.5	2.5	13
∃ CIS.13: Network Monitoring and Defense	() D	2.3	2.4	17
	0 Р	2.0	2.0	\bigcirc
E CIS.15: Service Provider Management	🕗 Dir	2.3	2.2	2
	🕗 Dir	2.3	2.2	12
	-			

Using pragmatic dashboards (Risk Owner-level)

Risk Posture How are we mitigating our risks?

Organisation unit: Enterprise

Risks Threats Impact Type Exposure Exposure Prevent Det/Cor Name Accidental External Cyber S 🕨 2.4 Leakage of Attack Customer Malicious Μ 2.4 2.4 information Insider Cyber Disruption to Attack SÞ Business Supply Chain Μ 2.4 2.4 Operations Compromise Disruption to S 🕨 ∃ Upstream DoS Μ 2.5 2.4 **Online Services** Attack Loss of Digital SÞ Trust Theft of S Confidential Business Information Theft of S 🕨 Customer Information Theft of Funds S

ID: Name ①	Ту	pe	Assesse	d	Derived	KCI
□ CIS.01: Inventory and Control of Enterprise Assets)					
CIS.01-01: Establish and Maintain Detailed Enterprise	\oslash	Ρ	2.9		2.9	1
CIS.01-02: Address Unauthorized Assets	\oslash	Ρ	3.3		3.3	\bigcirc
CIS.01-03: Utilize an Active Discovery Tool	(!)	D	2.1		2.1	\bigcirc
CIS.01-04: Use Dynamic Host Configuration Protocol	\oslash	Ρ	2.7		2.4	2
CIS.01-05: Use a Passive Asset Discovery Tool	(!)	D	2.1		2.1	\bigcirc
CIS.02: Inventory and Control of Software Assets	\oslash	Р	2.3		2.3	2
CIS.03: Data Protection	\oslash	Dir	2.7		2.6	21
CIS.04: Secure Configuration of Enterprise Assets	\oslash	Р	2.3		2.2	11
CIS.05: Account Management	\oslash	Р	3.0		2.8	9
CIS.06: Access Control Management	\oslash	Р	2.5		2.5	14
CIS.07: Continuous Vulnerability Management	\oslash	Р	2.3		2.4	7
CIS.08: Audit Log Management	()	D	2.5		2.5	13
CIS.09: Email and Web Browser Protections	\oslash	Р	2.8		2.6	3
CIS.10: Malware Defenses	\oslash	Р	2.5		2.5	6
CIS.11: Data Recovery	Ð	с	2.1		2.0	8
CIS 12: Network Infrastructure Management	\bigcirc	D	2 5		25	12

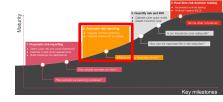
Using pragmatic dashboards (Risk Owner-level)

Control Indicators Are our controls operationally effective?

Organisation unit: Enterprise

 \bigcirc Ξ

Metric ID -	name	Туре	Status	Score	Target Trend		Red	A
∃ CIS.01:	Inventory and Control of Enterprise Assets						68	
M017	% of DHCP servers or IP address management tools configured with DHCP logging	E Pol	Red	59.4%	100%		Unique indicators	/190
M018	% of DHCP servers or IP address management tools configured with DHCP logging wh	🕑 Cov	Red	39.0%	100%			
M098	% of endpoints not in the asset inventory	E Pol	Amber	25.0%	0%		O Amber	A
∃ CIS.02:	Inventory and Control of Software Assets						79	
D048 9	% of Azure Defender for Cloud checks: Adaptive application controls for defining safe a	🗐 Pol	Green	15.4%	0%	•	Unique indicators	/19
D052 9	% of Azure Defender for Cloud checks: Allowlist rules in your adaptive application contr	E Pol	Red	61.0%	0%	•	C	
CIS.03:	Data Protection						Green	А
A004 %	6 of AWS Security Hub failed checks: APIGateway.2 API Gateway REST API stages shoul	E Pol	Red	64.2%	0%	•	41	
A007 %	6 of AWS Security Hub failed checks: APIGateway.5 API Gateway REST API cache data s	E Pol	Green	14.8%	0%		Unique indicators	/19
A026 %	6 of AWS Security Hub failed checks: CodeBuild.3 CodeBuild S3 logs should be encrypt	E Pol	Amber	39.3%	0%			
A037 %	6 of AWS Security Hub failed checks: DataFirehose.1 Firehose delivery streams should	E Pol	Amber	20.5%	0%			
A038 %	6 of AWS Security Hub failed checks: DocumentDB.1 Amazon DocumentDB clusters sh	E Pol	Amber	37.6%	0%			
A039 %	6 of AWS Security Hub failed checks: DocumentDB.2 Amazon DocumentDB clusters sh	E Pol	Amber	32.4%	0%		Select metric from	n table
A042 %	6 of AWS Security Hub failed checks: DocumentDB.5 Amazon DocumentDB clusters sh	E Pol	Red	58.6%	0%	•		
A045 %	6 of AWS Security Hub failed checks: DynamoDB.3 DynamoDB Accelerator (DAX) cluste	[=] Pol	Amber	43.6%	0%			


Using pragmatic dashboards (Operations-level)

Of the second second

Risk Explorer How do risk factors relate to each other?

Moving towards automation

Now imagine updating these risks, threats, controls and particularly control indicators on a quarterly basis to allow for frequent reporting to the Board of Directors.

Start out small – find a reasonable metric for a control and find a way to pull that metric automatically from your infrastructure.

sks		Threats				Controls					Metric ID - name	1	Гуре	Status	Score	Target Trend	📀 Red	
pact Type	Exposure	Name	Exposure	Prevent	Det/Cor	ID: Name ①	Туре	Assessed	d Derived	KCI	□ CIS.01: Inventory and Control of Enterprise Assets						68	
cidental	S►	Accidental	м	2.4	2.4		0 Р	2.6	2.6	3	M017 % of DHCP servers or IP address management tools configure	d with DHCP logging	Pol	Red	59.4%	100%	Unique indicators	s /
kage of tomer		Insider Leak				CIS.02: Inventory and Control of Software Assets	0 Р	2.3	2.3	2	M018 % of DHCP servers or IP address management tools configure	d with DHCP logging wh	🕑 Cov	Red	39.0%	100%		
rmation		 Customer compromise 	м	2.4	2.5	CIS.03: Data Protection	🕑 Dir	2.6	2.4	28	M098 % of endpoints not in the asset inventory		Pol	Amber	25.0%	0%	💿 Amber	
uption to	SÞ	External Cyber	м	2.4	2.4	E CIS.04: Secure Configuration of Enterprise Assets and	. 🕑 Dir	2.4	2.3	13	CIS.02: Inventory and Control of Software Assets						79	
ness rations		Attack				CIS.05: Account Management	🖉 Р	3.0	2.8	9	D048 % of Azure Defender for Cloud checks: Adaptive application co	ontrols for defining safe a	E Pol	Green	15.4%	0% .	Unique indicators	s
uption to	SÞ	 External information 	М	2.4	2.6		ØР	2.5	2.5	14	D052 % of Azure Defender for Cloud checks: Allowlist rules in your a	daptive application contr	Pol	Red	61.0%	0% •	onique indicators	
ne Services		manipulation				CIS.07: Continuous Vulnerability Management	🕑 Dir	2.3	2.3	7	CIS.03: Data Protection						Green	
of Digital t	S►	Malicious Insider	r M	2.4	2.4		🕑 Dir	2.3	2.3	15	A004 % of AWS Security Hub failed checks: APIGateway.2 API Gatew	vay REST API stages shoul	=] Pol	Red	64.2%	0% .	41	
t of	SÞ	Cyber Attack					🖉 Р	2.8	2.6	3	A007 % of AWS Security Hub failed checks: APIGateway.5 API Gatew	vav REST API cache data s	E Pol	Green	14.8%	0%	Unique indicators	s
fidential		 Physical security attack 	м	2.4	2.6		🖉 Р	2.5	2.5	6	A026 % of AWS Security Hub failed checks: CodeBuild.3 CodeBuild S		=] Pol	Amber	20.2%	0%	onique indicators	
ness rmation		🗄 Supply Chain	М	2.4	2.4		🕗 Dir	2.1	2.1	11			_	Amber	33.370	•		
t of	SÞ	Compromise				CIS.12: Network Infrastructure Management	🖉 Р	2.5	2.5	13	A037 % of AWS Security Hub failed checks: DataFirehose.1 Firehose		Pol	Amber	20.5%	0% •		
omer		 Upstream DoS Attack 	M	2.4	2.5	CIS.13: Network Monitoring and Defense	() D	2.3	2.4	17	A038 % of AWS Security Hub failed checks: DocumentDB.1 Amazon	DocumentDB clusters sh	= Pol	Amber	37.6%	0% •		
mation t of Funds	S►	Attock				CIS.14: Security Awareness and Skills Training	0 Р	2.0	2.0		A039 % of AWS Security Hub failed checks: DocumentDB.2 Amazon	DocumentDB clusters sh	Pol	Amber	32.4%	0% •	Select metric fro	,m ta
corrunus	3					CIS.15: Service Provider Management	🕑 Dir	2.3	2.2	2	A042 % of AWS Security Hub failed checks: DocumentDB.5 Amazon	DocumentDB clusters sh	Pol	Red	58.6%	0%		
						CIS.16: Application Software Security	🕑 Dir	2.3	2.2	12	A045 % of AWS Security Hub failed checks: DynamoDB.3 DynamoDB	B Accelerator (DAX) cluste	Pol	Amber	43.6%	0%		

Touching upon quantification Some questions to get started

Why doesn't everyone quantify?

Does cyber risk quantification need to be very complicated?

How do you get started?

Why is quantification of IT-risks relevant

Quantification of IT-risks are required and relevant both for regulatory and general enterprise risk management purposes

DORA incident reporting

It is a requirement to report the total amount of gross and indirect costs and losses incurred by the financial entity stemming from a major incident under DORA as part of the final report.

Due to the time restraints imposed in DORA a calculation framework and governance need to be established in order to adequately estimate the impact when a major incident occurs.

Calculation of emerging risks in ORSA and ICAAP

As part of the ORSA and ICAAP processes, IT-risks are highly relevant given its status as an emerging risk and not necessarily captured adequately in the capital models.

The impact of Cyber on your business could be calculated in different scenarios, such as a best estimate, 200 year event, etc.

\$ -\$ -\$

Business insights

Quantification can help inform decision makers about what Cyber scenarios are truly material to the business, thus empowering the business to spend time on mitigating the risk drivers that truly matter to the business and less on others.

0 0

Management reporting

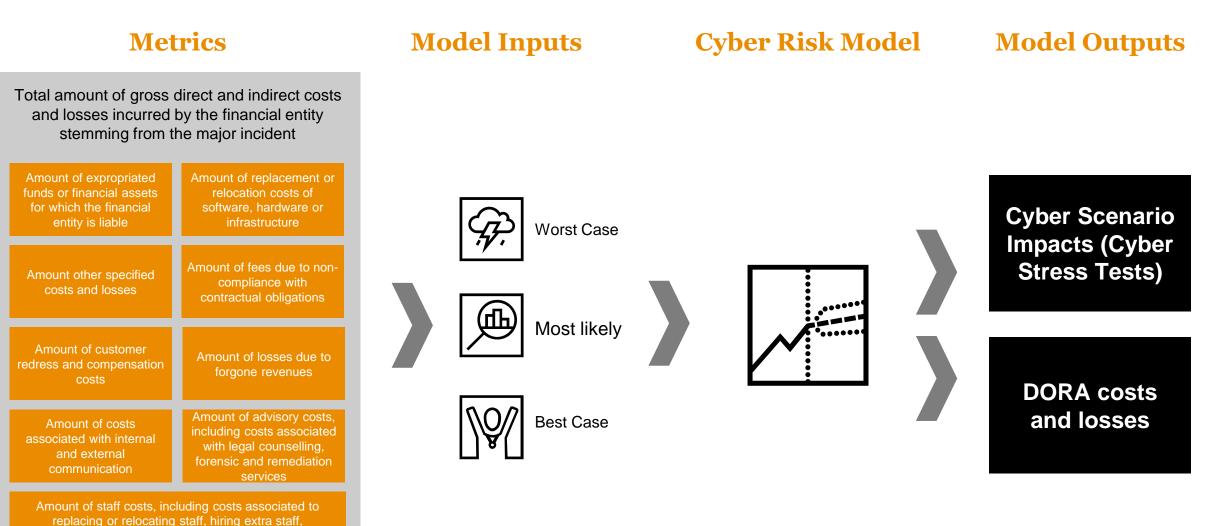
Quantifying IT-risks can be a key tool for the board to challenge whether the actual IT-risks are aligned with the risk appetite.

Furthermore, it can help inform the CISO and other stakeholders on relevant mitigation activities and to assess the cost of these against the IT-risk reduction.

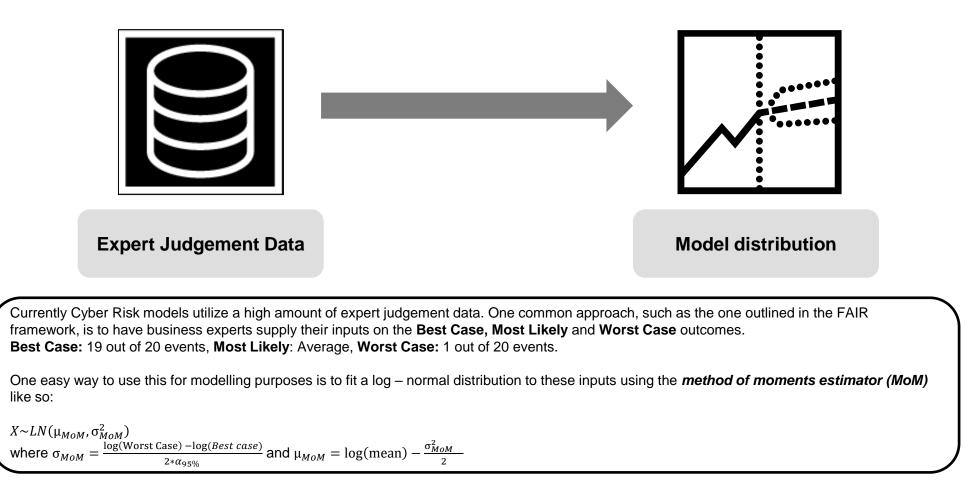
Challenges in quantifying cyber risks

Cyber risk is a so-called 'Emerging Risk'. This presents numerous challenges when modelling quantitative impacts

Lack of data: There is only very sparse public databases available that provide insight into the impact of cyber attacks and these are largely biased, as they are based on self-reporting. Most companies do not disclose the impact of successful attacks nor the frequency of attempted attacks against them.



Lack of modeling expertise: Since losses due to cyber attacks are so new and the amount of data is so small, there has also not been any consensus around 'best practice' within the modeling of these, neither in the industry nor in the scientific literature.


Insufficient domain knowledge: It is only in rare cases that cyber risk modelers and cyber risk experts are the same person.

Overview of Cyber Risk Model and DORA metrics

remuneration of overtime and recovering lost or impaired skills of staff

Utilizing expert judgement data

Spørgsmål